reciprocal$67423$ - vertaling naar grieks
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

reciprocal$67423$ - vertaling naar grieks

Reciprocal gamma; Reciprocal Gamma; Reciprocal Gamma function
  • Γ(''z'')}}}} in the [[complex plane]], plotted using [[domain coloring]].

reciprocal      
adj. αμοιβαίος, αλληλοπαθής
reciprocal agreement         
WIKIMEDIA DISAMBIGUATION PAGE
Reciprocal relationship; Reciprocity (mathematics); Non-reciprocal; Reciprocal agreement; Reciprocity (disambiguation); Principle of reciprocity; Reciprocal arrangement; Reciprocal proportion
αμοιβαία συμφωνία

Definitie

Reciprocal
The reciprocal of a number is the quotient obtained by dividing one by the number. Thus the reciprocal of 8 is 1/8. Applied to fractions the above operation is carried out by simply inverting the fraction. Thus the reciprocal of 3/4 is 4/3 or 1-1/3.

Wikipedia

Reciprocal gamma function

In mathematics, the reciprocal gamma function is the function

f ( z ) = 1 Γ ( z ) , {\displaystyle f(z)={\frac {1}{\Gamma (z)}},}

where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-half plane).

The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function.

Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.